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We study a modified version of the stochastic susceptible-infected-refractory-susceptible �SIRS� model by
employing a nonlinear �exponential� reinforcement in the contagion rate and no diffusion. We run simulations
for complete and random graphs as well as d-dimensional hypercubic lattices �for d=3,2 ,1�. For weak
nonlinearity, a continuous nonequilibrium phase transition between an absorbing and an active phase is ob-
tained, such as in the usual stochastic SIRS model �Joo and Lebowitz, Phys. Rev. E 70, 036114 �2004��.
However, for strong nonlinearity, the nonequilibrium transition between the two phases can be discontinuous
for d�2, which is confirmed by well-characterized hysteresis cycles and bistability. Analytical mean-field
results correctly predict the overall structure of the phase diagram. Furthermore, contrary to what was observed
in a model of phase-coupled stochastic oscillators with a similar nonlinearity in the coupling �Wood et al.,
Phys. Rev. Lett. 96, 145701 �2006��, we did not find a transition to a stable �partially� synchronized state in our
nonlinearly pulse-coupled excitable elements. For long enough refractory times and high enough nonlinearity,
however, the system can exhibit collective excitability and unstable stochastic oscillations.
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I. INTRODUCTION

Understanding collective effects of noisy excitable ele-
ments is essential for several disciplines, such as neuro-
science, epidemiology, and chemistry, among others. An iso-
lated excitable element is a dynamical system which stays in
a quiescent state until it suffers a sufficiently strong pertur-
bation. In that case its trajectory in phase space can be char-
acterized by an excited state, which is then followed by a
refractoriness to further perturbations before returning to
rest. A minimal �discrete� model of an excitable element
therefore consists of a three-state system �1�. In the parlance
of neuroscience �epidemics�, each element could represent a
neuron or patch of active membrane �individual� which se-
quentially becomes polarized �susceptible�, spiking or depo-
larized �infected�, and then refractory �recovered�. Collective
dynamics emerge because quiescent elements are typically
perturbed by excited elements.

A simple system which incorporates these ingredients in a
scenario with noise is the stochastic susceptible-infected-
recovered-susceptible �SIRS� epidemic lattice model �2�. It is
a continuous-time model in which a site goes from suscep-
tible to infected at a rate which depends on the density of its
infected neighbors. In epidemiology, the model �or variants
thereof� can be employed to investigate, e.g., whether an
initial density of infected sites �which is usually chosen as
the order parameter� will reach a nonzero stationary value or
decrease to zero. If all sites become quiescent, the dynamic
halts and the system is said to be in a absorbing state �3�.

Increasing the coupling between infected and susceptible
sites, the SIRS model undergoes a continuous nonequilib-
rium phase transition from an absorbing to an active phase

characterized by a stationary nonzero density of infected
sites. However, experimental data �from neuroscience, epide-
miology, and chemistry, among others� can exhibit also glo-
bal oscillations. This additional transition has been observed
mostly in cellular automata, where the sites are synchro-
nously updated �1,4–6�. This technical detail is apparently
relevant since global oscillations in stochastic continuous-
time models are less common. As discussed by Risau-
Gusman and Abramson, they sometimes appear as stochastic
oscillations in single runs of the model but disappear in tra-
jectories of the averaged lattice activity and analytical de-
scriptions �usually mean-field� thereof �7�. Global oscilla-
tions predicted by mean-field �MF� approximations were
observed in both non-Markovian �8� and Markovian �9�
models of three-state continuous-time stochastic oscillators.
These models, however, do not have an absorbing state.

Here we investigate a modified version of the SIRS model
with a nonlinear rate which can be considered a pulse-
coupled excitable version of the original phase-coupled os-
cillator model of Wood et al. �9�. We will show, on the one
hand, that this nonlinear �but Markovian� extension of the
SIRS model is apparently insufficient for the generation of
sustained collective oscillations. On the other hand, the
model presents phase transitions into an absorbing state
which can be continuous �if weakly nonlinear� or discontinu-
ous �if nonlinear enough and for d�2�. We therefore provide
a three-state continuous-time model which can undergo dis-
continuous phase transitions like those of Bidaux et al. for a
two-state cellular automaton �10� except that the nature of
the transition here can be controlled by a free parameter �not
only the spatial dimension �10��. Moreover, differently from
most models presenting nonequilibrium discontinuous phase
transitions �3,11,12�, the parameter which controls the nature
of the transition is not diffusion �which is absent from our
model�. The model can also exhibit a different bifurcation
scenario from what is usually observed in nonequilibrium
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lattice models, showing collective excitability and unstable
global oscillations.

The paper is organized as follows. In Sec. II we introduce
the model, analyze its mean-field solution, and compare it to
simulations of random and complete graphs. Simulation re-
sults for d-dimensional hypercubic lattices are shown in Sec.
III, while our concluding remarks are discussed in Sec. IV.

II. MODEL

In the conventional stochastic version of the SIRS epi-
demic model, a susceptible �S� site at position x
�x=1, . . . ,N� becomes infected �I� at a rate �nI�x� /k�x�,
where k�x� is the number of neighbors of x, out of which
nI�x� are infected, and � is the so-called infection rate �the
coupling parameter�. After that, the site becomes temporarily
insensitive to its surroundings �hence the term pulse cou-
pling�, jumping from infected to recovered �R� at a constant
rate �, and from recovered back to susceptible at a rate �.
This is summarized as follows:

S → I at rate �nI/k , �1�

I → R at rate � , �2�

R → S at rate � . �3�

Since all rates could in principle be normalized by �, in the
following we set �=1 without loss of generality.

For low values of �, an initial density of infected sites
eventually dies out and the system reaches its unique absorb-
ing state �all sites susceptible�. For � larger than a critical
value �c, on the other hand, a phase with nonzero density of
infected sites becomes stable in the thermodynamic limit
N→� �though the absorbing state is obviously always a so-
lution�. The transition at �c �studied in detail by Joo and
Lebowitz �2�� is widely believed to be continuous and be-
longing to the directed percolation �DP� universality class
�13,14�.

Adapting the nonlinear coupling employed by Wood et al.
�9� to pulse-coupled excitable elements, one obtains a gener-
alization of the SIRS model. Instead of Eq. �1�, we propose

S → I at rate

g�nI/k,nS/k� � b�ea�nI−nS�/k − e−anS/k� , �4�

where a and b are coupling parameters, nS is the number of
susceptible neighbors, and Eqs. �2� and �3� remain unaltered.
Note that the interaction occurs only among first neighbors.
The second term in rate 4 guarantees the existence of an
absorbing state: if all sites are susceptible �thus nI=0 for all
sites�, they will remain susceptible forever. For small values
of a �a�1�, one recovers the linear behavior of the original
SIRS model, with ��ab, to first order. So for small a, in-
creasing b leads to a continuous phase transition just like in
the SIRS model �2�. For large enough a, however, we will
show that increasing b leads to a discontinuous phase transi-
tion.

As a motivation to rate 4, let us note that the dynamics
underlying neuronal firing is highly nonlinear in several of

its aspects: membrane depolarizes when �typically Na+�
channels open very quickly, in a thresholdlike behavior. This
process, on its turn, is triggered by a �nonlinear� sum of
smaller depolarizations induced at synapses by presynaptic
neurons. Synaptic dynamics �including neurotransmitter
binding, in the simplest case� is itself nonlinear. It is there-
fore not unusual that reduced models of collective neuronal
phenomena allow for nonlinear terms �15�. In our case, the
nonlinearity is controlled by parameter a.

A. Mean-field analysis

The structure of the phase diagram in the �a ,b� plane can
be captured most easily by analyzing the mean-field version
of the model. Letting P��� be the probability that a site is in
state � ��� �S , I ,R��, one obtains

Ṗ�S� = − g�P�I�,P�S��P�S� + �P�R� , �5�

Ṗ�I� = g�P�I�,P�S��P�S� − �P�I� , �6�

Ṗ�R� = �P�I� − �P�R� . �7�

These equations are exact for a complete graph when k
=N→� and n�→� with n� /k= P���. In what follows, we
will employ the stationary value of the density of infected
sites P�I�� as the order parameter.

By employing the normalization condition P�S�+ P�I�
+ P�R�=1, one can eliminate P�R� and study the resulting
two-dimensional flow of the mean-field dynamics in the
�P�S� , P�I�� plane, as shown in Fig. 1. For low values of a
�lower panel of Fig. 1�, the absorbing state P�S�=1 loses
stability in a transcritical bifurcation, giving rise to a stable
active state with a density of infected sites which increases
continuously from P�I�=0. For large enough a, the discon-
tinuous character of the phase transition reveals itself in the
mean-field equations through a saddle-node bifurcation �up-
per panel of Fig. 1�: an active state appears with nonzero
P�I�, while the absorbing state remains stable. As usual, this
bistability is regulated by the stable manifold of the saddle,
which separates the basins of attraction of the two stable
fixed points. Increasing b further, another transcritical bifur-
cation occurs: the absorbing state loses stability and the ac-
tive state becomes the only attractor of the system.

B. Random graph simulations

Hysteresis is one of the simplest fingerprints of multista-
bility, and in this system it can be clearly detected in simu-
lations of Erdős-Rényi random graphs �16� with finite aver-
age connectivity K, with which the mean-field equations
show a good agreement. Simulations were performed for a
fixed value of a. For each value of b, we allowed the system
to evolve during tmax time steps. Each time step 	t �corre-
sponding to N random updates �3�� was chosen to be ��+�
+bea�−1 to make sure probabilities are less than one. Param-
eter b was increased or decreased in constant intervals �b,
and the initial condition of the network for each value corre-
sponded to the final condition of the preceding case. We
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applied a small rate h �h
1 /N� to spontaneously excite qui-
escent sites, thus preventing the system from getting trapped
in the absorbing state by finite-size fluctuations �10,17�.

The insets of Fig. 2 show that a loop in b leads to a
hysteresis cycle �as observed for the density of active sites
P�I�� for high enough values of a �a�ac�. For low values of
a, the phase transition is continuous. The boundaries be-
tween the phases in the �a ,b� plane �main plot of Fig. 2� can
be numerically obtained from the mean-field equations and
easily estimated from the random graph simulations �hyster-
esis cycles did not change significantly when tmax was
doubled; see also Sec. III�.

To obtain the phase diagram shown in Fig. 2, we em-
ployed a mean refractory time comparable to the excitation
time, �=1. However, we did not find qualitative differences
in the mean-field phase diagram in the limiting case �→�,
which suggests that the simulation results we present here
will also be valid for a two-state system.

C. Absence of sustained global oscillations

In the process of scanning parameter space in search of
collective oscillations, we have found small regions in which
a Hopf bifurcation involving the active state can indeed oc-
cur. As we shall see, however, this does not necessarily imply
the existence of sustained collective oscillations, which we
have not found in this model.

We exemplify with results for �=0.01, whose phase dia-
gram is shown in Fig. 3�a�. Though qualitatively similar to

Fig. 2, there is now a narrow interval of b values �for high
values of a� in which the route to bistability, instead of the
simple saddle-node scenario described in Fig. 1�a�, requires
additional intermediate bifurcations �18� �inset of Fig. 3�a��.
These occur while the absorbing fixed point remain stable.

Starting from the absorbing phase and increasing b, first a
saddle-node bifurcation occurs in which the node is unstable
�and quickly becomes a spiral, Fig. 3�b��. At this stage, the
system still has only a single stable fixed point, but the struc-
ture of phase space is such that the system has become col-
lectively excitable: if the system is below the upper stable
manifold �USM� of the saddle �Fig. 3�b��, it will monoto-
nously return to the absorbing state, whereas a point above
the USM will go through a long excursion around the upper
unstable manifold �UUM� before coming to rest �Fig. 3�b��,
displaying a spikelike time series �Fig. 3�e��.

Increasing b further, the spiral becomes stable in a Hopf
bifurcation and is now surrounded by an unstable limit cycle
�ULC� �Fig. 3�c��. Formally, in this parameter region the
system is collectively bistable, but note that the active phase
will only be reached from initial conditions within the ULC
�which, owing to the small value of �, is also very small—
see scale in Fig. 3�b��. Note also that the overcrowding of
lines outside the ULC signals that it is weakly repulsive. The
inner stable fixed point �the active phase� is correspondingly
weakly attractive �which is the reason why the flux inside the
ULC is not shown�. This means that a collective oscillation
solution exists �the ULC� but is so weakly unstable that it
might get confounded with sustained oscillations �even in the
numerical integration of Eqs. �5�–�7��. From single-run simu-
lations of a complete graph with N=106, we have obtained a
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time series with oscillations �Fig. 3�f�� which only disappear
when, owing to finite-size fluctuations, the system reaches
the absorbing state �3�. We therefore confirm the scenario
predicted by Risau-Gusman and Abramson: since the eigen-
values of the stable fixed point have a nonzero imaginary
component, inevitable fluctuations will generate stochastic
oscillations �7�.

Finally, the ULC disappears in a homoclinic �HC� bifur-
cation, after which the active fixed point is separated from
the absorbing fixed point only by the stable manifolds of the
saddle. Note that the lower stable manifold �LSM, see Fig.
3�d�� no longer comes from the unstable fixed point nor from
the ULC but rather joins the USM as t→−�. The LSM will
gradually unfold as b increases until a phase portrait similar
to that of the central plot of Fig. 1�a� is reached �before the
saddle collides—for yet larger values of b—with the absorb-
ing fixed point in a transcritical bifurcation�. Collective ex-
citability and stochastic oscillations remain present in this
regime �Figs. 3�d� and 3�g��.

Our phase diagram emerged essentially from local stabil-
ity analysis, so in principle it does not exclude a saddle-node
bifurcation of cycles from occurring within the active or
bistable regions. However, numerical integration of Eqs.
�5�–�7� for a variety of initial conditions and combination of
parameters did not show any signs of it.

Although the above analysis is based on the mean-field
approximation, it is worth mentioning that improvements on
the mean-field approximation do not necessarily help the
prediction of collective oscillations. Rozhnova and Nunes
�19� recently observed that the equations obtained by Joo and
Lebowitz �2� for the two-site approximation lead to sustained
oscillations in a small region for ��1. However, when
simulating random graphs in the same parameter region,
these oscillations get damped �20�.

III. SIMULATIONS IN HYPERCUBIC LATTICES

Since simulations with small values of � are very difficult
to perform �2�, we now focus on the simpler bifurcation sce-
nario of Fig. 2 and discuss the results of simulations for �
=1. Identifying the nature of the transition in hypercubic
lattices is not so simple as for random and complete graphs.
As has been recently discussed in detail by Takeuchi �17�,
even a system which undergoes a continuous phase transition
into an absorbing state �such as those belonging to the di-
rected percolation universality class� may show a hysteresis
cycle when the coupling parameter loops around its critical
value. This is due to the divergence of the transient times at
criticality in the thermodynamic limit. In simulations, this
gets reflected in the width of the hysteresis cycle scaling with
the ramp rate �defined as the increment in b per unit time� as
�1 / tmax�1/��+1�, where � is the critical exponent governing the
order parameter �3,17�.

Consider, for instance, the hysteresis cycles shown in Fig.
4�a� for d=3 and two values of tmax differing by an order of
magnitude �while the increments in the values of b have been
kept the same �17��. Whether or not the transition is continu-
ous will depend on whether the width 	b of the hysteresis
cycle shrinks to zero in the limit tmax→�. We have opera-
tionally defined 	b as follows: for each run, we attribute the
upper end of the hysteresis cycle to the b value at which the
density of active sites �averaged over tmax time steps� P�I� is
first above 1 /	N. Similarly, the lower end of the hysteresis
cycle is defined as the point where P�I� falls below 1 /	N.
The width of the hysteresis cycle 	b is then obtained by
averaging the difference over the runs. We plotted 	b versus
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FIG. 3. �Color online� �a� Phase diagram of the �mean-field
version of the� model for �=0.01 �panels b–g also show single-run
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Fig. 2, except for those additionally occurring within the marked
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show the points in parameter space which correspond to the phase
portraits below. �b� A saddle and an unstable fixed point are born in
a saddle-node bifurcation. �c� The fixed point becomes stable via a
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1 / tmax in Fig. 4�b� for two values of a. For a=4.5 �which
corresponds to the hysteresis cycles shown in Fig. 4�a��, a
linear extrapolation leads to a nonzero value of 	b as tmax
→�, which is consistent with a discontinuous phase transi-
tion. For d=3 and a=1.875, on the other hand 	b decreases
to zero as a power law �1 / tmax�0.55, which is consistent with
Takeuchi’s prediction �17� for the DP universality class ��
�0.805�10� �21��.

One could in principle feel uncomfortable with the above
described criterion for deciding on the discontinuity of the
transition because in practice the linear extrapolation may
not coincide with limtmax→� 	b if transient times are too long

�and we expect them to be long near a continuous transition�.
This problem becomes more salient as we decrease the spa-
tial dimension, as depicted for d=2 and a=7 in Fig. 5. Note
the smoothness of the largest hysteresis cycle in Fig. 5�a�,
which is very similar to the ones observed by Takeuchi �17�
near a continuous transition. According to the extrapolated
value of 	b for tmax→�, however, this transition would be
considered discontinuous �see upper plot in Fig. 5�b��,
whereas for weaker nonlinearity �a=4.5, lower plot of Fig.
5�b�� we obtain again a power law �1 / tmax�0.63 �17� compat-
ible with DP in d=2 ���0.583�4� �21��.

To be sure of the discontinuity of the transition, it is sim-
pler �and computationally less expensive� to investigate di-
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the increment in b employed in the hysteresis cycle ��b=10−2 in the
case a=4.5�. Panels �c� and �d� show the time evolution of P�I�
�averaged over 20 runs� for a=7 and different initial conditions
�with NP�I� sites in state I at t=0 and the remaining in state S�,
showing phase bistability for b=4.4 but not for b=21.5.
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rectly the alleged bistability: we fix a and b and check the
dependence of the stationary state on the initial condition
�22,23�. This test is shown in Figs. 4�c�, 4�d�, 5�c�, and 5�d�
for d=3 and d=2, respectively. Figures 4�c� and 5�c� confirm
bistability since for lower �higher� initial values of P�I� the
system converges to the absorbing �active� state. Figures 4�d�
and 5�d� serve as a negative control, confirming �in a region
where only the active state is stable� that the convergence to
the absorbing state in the previous cases are not due to finite-
size fluctuations. We note that all samples converged to the
same attractor �either absorbing or active� as their average.

The extrapolation limtmax→� 	b was employed to draw the
phase diagram of the model for two- and three-dimensional
lattices. As shown in Fig. 6, the qualitative structure of the
phase diagram is well reproduced by the mean-field predic-
tions, though quantitative agreement worsens as dimension-
ality decreases as expected. Note that the bistable phase for
d=2 is much smaller than for d=3. For d=1, the large error
bars in Fig. 6 for large a emerge due to extremely large
transients. We have not observed clearly discontinuous tran-
sitions for d=1 up to a=7. This is in agreement with the
results of Bidaux et al. �10,24� as well as with Hinrichsen’s
conjecture that discontinuous transitions in d=1 should only
occur in the presence of diffusion �25�.

IV. CONCLUSIONS AND PERSPECTIVES

In summary, we have proposed a Markovian continuous-
time lattice model of nonlinearly pulse-coupled excitable el-
ements. Coupling depends linearly on rate b and nonlinearly
on the dimensionless parameter a. We have shown that in-
creasing the nonlinearity of the coupling leads to a change in
the nature of the phase transition into an active state. In the
regime of linear coupling �a�1�, where the model ap-
proaches the stochastic SIRS model, an active phase with
P�I��0 appears through a continuous transition as b in-
creases. In a sufficiently nonlinear regime �large enough a�,
increasing b leads to a discontinuous phase transition. The
nature of the transition can therefore be controlled by a
single parameter, which is not diffusion. These results can be
predicted by mean-field analysis and are qualitatively con-
firmed in simulations of random graphs and hypercubic lat-
tices for d�2. The fact that a discontinuous transition was
not found for d=1 is consistent with previous results for
two-state systems with little or no diffusion �10–12,24,25�.

We have characterized discontinuous transitions by two
complementary criteria: first, hysteresis cycles were obtained
and their width estimated by extrapolation for an infinite
number of Monte Carlo time steps; then, bistability was ex-
plicitly confirmed by checking that the system trajectory ex-
hibits dependence on the initial conditions. In the case of
continuous transitions, the width of the hysteresis cycles
scaled with the ramp rate according to recent predictions by
Takeuchi �17�.

Finally, we recall that the exponential coupling in Eq. �4�
was inspired in the model of Wood et al. �9�. While their
nonlinear phase-coupled stochastic oscillators do undergo a
phase transition into a synchronized state, we did not find
sustained collective oscillations with a similar nonlinearity
among pulse-coupled excitable elements. However, we did
find �albeit in a small parameter region� unstable global os-
cillations and collective excitability in the mean-field equa-
tions. Simulations of the complete graph revealed stochastic
oscillations in single runs whenever the active phase corre-
sponded to a stable spiral in the mean-field equations. It re-
mains to be investigated whether collective excitability and
stochastic oscillations remain in regular lattices or appear in
the transition to a small-world regime.
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FIG. 6. �Color online� Phase diagram of the model in one-, two-,
and three-dimensional hypercubic lattices �squares, circles, and tri-
angles, respectively�. Open symbols �with dashed lines to guide the
eye� mark the onset of phase bistability, with the sudden appearance
of a stable active phase with finite order parameter. Filled symbols
�with solid lines to guide the eye� denote a transition in which the
absorbing state loses stability. The region in between dashed and
solid lines correspond to the bistable regime. Lines without symbols
show MF results for comparison. Results correspond to simulations
with �=1 and h=2.510−5. For d=1, 2, and 3, linear system sizes
were L=32400, L=150, and L=25 �where N=Ld�, the maximum
values of tmax were 5105, 2105, and 105, with results averaged
over 10, 10, and 20 runs, respectively.
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